Convective heat transfer in foams under laminar flow in pipes and tube bundles.
نویسندگان
چکیده
The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.
منابع مشابه
Convective Heat Transfer of Oil Based Nanofluid Flow Inside a Circular Tube
Abstract An empirical investigation was carried out to study convective heat transfer of nanofluid flow inside an inclined copper tube under uniform heat flux condition. Required data are acquired for laminar and hydrodynamically fully developed flow inside round tube. The stable CuO-base oil nanofluid with different nanoparticle weight fractions of 0.5%, 1% and 2% was produced by means of ul...
متن کاملExperimental Investigation on Heat Transfer of Silver-Oil Nanofluid in Concentric Annular Tube
In order to examine the laminar convective heat transfer of nanofluid, experiments carried out using silver-oil nanofluid in a concentric annulus with outer constant heat flux as boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique and observed no nanoparticles agglomeration during nanofluid preparation process and carried out experiments. The average size...
متن کاملSimulation of Convective Heat Transfer of a Nanofluid in a Circular Cross-section
The CFD simulation of heat transfer characteristics of a nanofluid ina circular tube under convective heat transferwas considered using the fluentsoftware (version 6.3.26) in the laminar flow. Al2O3nano- particles in water with concentrations of 0.5, 1.0, 1.5, 2 and 2.5% were studied in the simulation. All thermo-physical properties of nanofluids were temperature independent. It was concluded t...
متن کاملCuO/water Nanofluid Convective Heat Transfer Through Square Duct Under Uniform Heat Flux
Sometimes the need for non-circular ducts arises in many heat transfer applications because of lower pressure drop of non-circular cross section such as square duct compared to circular tube, particularly in compact heat. But square cross section has poor heat transfer performance and it is expected that using a nanofluid as a new heat transfer media may improve the heat transfer performance of...
متن کاملNumerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)
The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of heat and mass transfer
دوره 55 25-26 شماره
صفحات -
تاریخ انتشار 2012